Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere-membrane interaction, not sarcomere assembly.
نویسندگان
چکیده
Tcap/telethonin encodes a Z-disc protein that plays important roles in sarcomere assembly, sarcomere-membrane interaction and stretch sensing. It remains unclear why mutations in Tcap lead to limb-girdle muscular dystrophy 2G (LGMD2G) in human patients. Here, we cloned tcap in zebrafish and conducted genetic studies. We show that tcap is functionally conserved, as the Tcap protein appears in the sarcomeric Z-disc and reduction of Tcap resulted in muscular dystrophy-like phenotypes including deformed muscle structure and impaired swimming ability. However, the observations that Tcap integrates into the sarcomere at a stage after the Z-disc becomes periodic, and that the sarcomere remains intact in tcap morphants, suggest that defective sarcomere assembly does not contribute to this particular type of muscular dystrophy. Instead, a defective interaction between the sarcomere and plasma membrane was detected, which was further underscored by the disrupted development of the T-tubule system. Pertinent to a potential function in stretch sensor signaling, zebrafish tcap exhibits a variable expression pattern during somitogenesis. The variable expression is inducible by stretch force, and the expression level of Tcap is negatively regulated by integrin-link kinase (ILK), a protein kinase that is involved in stretch sensing signaling. Together, our genetic studies of tcap in zebrafish suggested that pathogenesis in LGMD2G is due to a disruption of sarcomere-T-tubular interaction, but not of sarcomere assembly per se. In addition, our data prompted a novel hypothesis that predicts that the transcription level of Tcap can be regulated by the stretch force to ensure proper sarcomere-membrane interaction in striated muscles.
منابع مشابه
Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos.
Muscular dystrophy is frequently caused by disruption of the dystrophin-glycoprotein complex (DGC), which links muscle cells to the extracellular matrix. Dystroglycan, a central component of the DGC, serves as a laminin receptor via its extracellular alpha subunit, and interacts with dystrophin (and thus the actin cytoskeleton) through its integral membrane beta subunit. We have removed the fun...
متن کاملMembrane-myofibril cross-talk in myofibrillogenesis and in muscular dystrophy pathogenesis: lessons from the zebrafish
Striated muscle has a highly ordered structure in which specialized domains of the cell membrane involved in force transmission (costameres) and excitation-contraction coupling (T tubules) as well as the internal membranes of the sarcoplasmic reticulum are organized over specific regions of the sarcomere. Optimal muscle function is dependent on this high level of organization but how it establi...
متن کاملDepletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands.
The genetic study of titin has been notoriously difficult because of its size and complicated alternative splicing routes. Here, we have used zebrafish as an animal model to investigate the functions of individual titin isoforms. We identified 2 titin orthologs in zebrafish, ttna and ttnb, and annotated the full-length genomic sequences for both genes. We found that ttna, but not ttnb, is requi...
متن کاملMyotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly.
The assembly and maintenance of the muscle sarcomere requires a complex interplay of actin- and myosin-associated proteins. Myotilin is a thin filament-associated Z-disc protein that consists of two Ig-domains flanked by a unique serine-rich amino-terminus and a short carboxy-terminal tail. It binds to alpha-actinin and filamin c and is mutated in limb girdle muscular dystrophy 1A (LGMD1A). Her...
متن کاملTelethonin protein expression in neuromuscular disorders.
Telethonin is a 19-kDa sarcomeric protein, localized to the Z-disc of skeletal and cardiac muscles. Mutations in the telethonin gene cause limb-girdle muscular dystrophy type 2G (LGMD2G). We investigated the sarcomeric integrity of muscle fibers in LGMD2G patients, through double immunofluorescence analysis for telethonin with three sarcomeric proteins: titin, alpha-actinin-2, and myotilin and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 18 21 شماره
صفحات -
تاریخ انتشار 2009